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Porphyrins are a class of organic molecules with a macrocyclic Table 1. Hydrodynamic Radii of Nanoparticles Formed from
tetrapyrrole core and different substituents. Porphyrins have remark- Hydrophobic, Hydrophilic, Amphipathic, and Bis-functionalized
. . . Porphyrins, by DLS; + Represents the Distributions
able photo-, catalytic-, electro-, and biochemical propettiEisey

are extensively used in self-assembling processes to prepare R @ R
monolayers and thin filma23 Multiporphyrin arrays are prepared Z/ N \S
both by organic synthesis and self-assembling technitjdesnd [l, N M Ny ,||
self-organized nanomaterials (radists3 nm) composed of por- ~ N
phyrins have also been prepared. R <=7 R

The properties of many nanoscaled particles are substantially
different than those of bulk materials composed of the same atoms
or molecule$.Nanometer-scale particles composed of metals, metal

M Average radius
(nm)

oxides, and other inorganic materials have been repoaedtiave 1 C\;\oﬁo/
a few composed of organic molecufed? Organic molecules also = Fe(Ill) 27 (£6)
are used in self-assembling processes to prepare “soft” nanostruc- 2 4-carboxylphenyl 2H" 46 (£40)

tures such as spheres and tub&sThus, nanoscaled particles

composed of porphyrins are expected to have chemical activities 4-carboxylphenyl, methyl ester 2H" 38 (+47)

significantly different from those of the free porphyrins or of those 4 Phenyl 2H" 11 (14)
immobilized onto/into supports. Porphyrin nanoparticles are prom- 5 4-methoxyphenyl H* 34 (£30)
ising components of advanced materials because of the rich .

photochemistry, stability, and proven catalytic activity. analogy 6 4-pyridyl 2H" 70(£50)
to inorganic and other organic nanoparticles, it is expected that 7 5,15-(mesityl)-10,20-(4-bromo-phenyl)  24(£6)
nanoparticles of porphyrins will have unique photonic properties 2H"

not obtainable by larger-scaled materials containing the macrocycle,
or by the molecules themselvésNe report the formation of o .
nanoparticles of catalytic porphyrins with enhanced stability and €thyleneglycol monomethyl ether derivatives appended to porphyrin

catalytic rate because of the structure of the aggregate and the(lll1 aids in the formation and stabilization of nanoparticles.
greater surface area. Control experiments without PEG yielded no stable porphyrin

Here we report the first synthesis and characterization of nanoparticles. Consistent with other nanoparticle preparations, the
porphyrin nanoparticles that are neither self-assembled by designedStaPilizer prevents agglomeration and is a factor in determining
intermolecular interactions nor encapsulated in an external matrix. hanoparticle sizé? _ L )
Porphyrin nanoparticles were prepared using mixing solvent Dynamic light sc_atterlng (DL_S) was used for_lnltlal characteriza-
techniqued: 12 (Polyetheylene)glycol (PEG) derivatives have been tion of the porphyrin nanoparticles, Table 1. Figure 1A shows the
widely used in nanoparticle preparations to prevent agglomeration LS measurement of a nanoparticle size of Fellllfhe average
and precipitation of amorphous solids, such as for SFEG was particle radius is 27 nm, and the size distribution of the nanopatrticles

used in experiments to prepare nanoparticles composetesé is remarkably narrow. Since many app_)lications c_>f these materials
substituted tetraphenylporphyrins, Table 1. The procedure to preparg@duire them to be on surfaces, atomic force microscopy (AFM)
nanoparticles composed of hydrophilic porphyrin Felilyas to was used to evaluate the integrity of the nanoparticles on glass in
dissolve 0.6-3 mg of porphyrin in 0.0350.2 mL of water, the absence of solvent, Figure 2. The heights of the nanoparticles
followed by rapid addition of 5 mL of CKCN. For nanoparticles ~ Measured by AFM are 3665 nm, Figure 1B, which is in general
composed of hydrophobic/amphipathic porphyrins, B0 of agreement with the DLS result, but this is not necessarily the case

(triethyleneglycol)monomethyl ether was mixed into a 0.4 mL for each entry in Table 1. Consistent with other nanoparticle
(0.28-1.2 mM) solution of the porphyrin in DMSO, and then 5 preparations; 2 different water-to-acetonitrile ratios affect the size
mL of water was added rapidly. In cases where DMSO was not a ©f Porphyrin nanoparticles, Figure 3.

suitable solvent, the porphyrin was dissolved in pyridine. The four ~AS €xpected, the U¥vis spectra of porphyrin nanoparticles are
significantly different compared to the spectra of the corresponding

porphyrin solutions. Soret bands were found to be broadened and
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1.00 8 in any dimension, as observed by DLS and AFM data, the
- aggregation may be cooperativeesulting in more thermodynami-
078 cally stable particles than expected from thé& kcal/mol per
porphyrin facen-stacking energy* The porphyrin nanoparticles
are exceptionally stable as judged by the unchanging optical
spectrum and DLS after months of storage.

025t Preliminary results on the catalytic activity of Fe porphyrin
H H nanoparticles, Fe(lll), or Fe(lll)7 reveal that they have a70-

' ¢ -0 fold greater turnover number and a 10-fold greater rate than the
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diameter (nm) individual porphyrin in solution using a standard catalytic epoxi-

Figure 1. (A) DLS characterization of porphyrin nanoparticles, average qation of cyclohexen&

diameter= 54 nm, made by adding 5 mL of acetonitrile to a solution In conclusion, we have developed a general method for prepara-
containing 0.6 mg of Fe(lI) in 0.035 mL of water. (B) Height distributions . ’ . . )

determined by AFM of the same solution see Figure 2. tion of stable 26-200nm diameter porphyrln nanopartlcles from a
wide variety ofmesearylporphyrins. The elegance of the method
lies in its simplicity. This work shows that the agent used to prevent
agglomeration can be covalently attached to the dye forming the
particle or as part of the solvent system. It also demonstrates that
these and other types of dyes with a range of photonic properties
do not need to be prepared by encapsulation in matrices or by
designed self-assembly a priori. The matrix may severely limit the
functionality of the particles in the former case, and at present,
this size of particle is difficult to achieve in the latter. A “green”
synthesis of porphyrité will also make these materials more
economically feasible.

Figure 2. Topographic AFM image of porphyrin nanoparticles of Fellll)
on glass. The particles are from the same solution as that used in the DLS

measurement. Acknowledgment. C.M.D. thanks NSF, CHE-0135509, and the
Israel-U.S. Binational Science Foundation.

90 4 Supporting Information Available: Preparation methods, DLS
£ histograms, UV-vis, and AFM data for porphyrin nanoparticles in
= 60 Table 1. (PDF) This material is available free of charge via the Internet
é at http://pubs.acs.org.
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